the term in x in Eq. (9) divided by the frequency, that is,

C=~An+ B,/ (np,o) (12)
or, again,
C/n~A4+ Bvpa/y, (13)

where we have neglected the small term ¥ due to the clamp-
ing and internal friction of the material.

In Fig. 7 we have plotted I' /7 against y pew/7 : The linear
dependence, though not perfect, is convincing. The pecu-
liar shape of the graph is due to the steep fall of 77 as Tis
decreased. The arguments about boiling apply here also. In
this case, the second term dominates: Again, this is evi-
dence for high-frequency, non-Stokes damping.

This is to be expected: The relevant lengths in the reed
are larger than the viscous penetration depth, which is
smaller than 2 ym even at T'= 1.4 K. The smallest of the
dimensions of the reed, its thickness, is 15 gm. The small-
ness of § is due to the relatively high frequencies we use.
Use of a longer, or more flexible, reed would allow us to
investigate the Stokes regime and probably, by turning on
the higher modes, to investigate the crossover to the non-
Stokes behavior that is predominant in our experiment.

V. CONCLUSIONS

The vibrating reed provides a novel way of measuring
the superfluid transition in helium, which is both accurate
and relatively simple. At the same time, the experimental
results show that a fairly simple analysis of the fluid me-
chanics involved is sufficient to account for the changes in
frequency and damping of the reed when it is submerged in
liquid helium.
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Conduction current and the magnetic field in a circular capacitor
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From the perspective of Ampere’s circuital law, either displacement current or conduction
current can be viewed as the source for the magnetic field inside a circular capacitor that is slowly
being charged. The Biot-Savart law is more selective. How it can be used with conduction current
alone is shown. Also considered is the “leaky capacitor. Here it is shown that an isolated charged
capacitor which discharges slowly in a homogeneous Ohmic dielectric produces no magnetic field
anywhere. Alternatively, a field is produced if the conducting material is confined to a limited
region. This field is calculated for a circular capacitor when only the material in the gap is

conducting.

L. INTRODUCTION

Thirty years ago French, King, and Tessman began an
experiment to measure the magnetic field caused by Max-
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well’s displacement current. They planned to measure the
field between the plates of a capacitor as it was being slowly
charged. They stopped their measurement when they real-
ized that the displacement current is superfluous; the mag-
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Fig. 1. Conduction currents and B field in a circular capacitor.

netic field in any quasistatic process can be calculated from
the Biot-Savart law applied to conduction currents
alone."?

More recently Corle and I have used a superconducting
quantum interference device (SQUID) to make just such a
measurement. We charged a circular parallel plate capaci-
tor and verified that the magnetic field B, ( p) inside the
capacitor is as expected.” We learned of French and Tess-
man’s work while our own was in progress. We were in-
trigued by their general theorem and have now developed a
specific application to our capacitor.

Imagine a circular, parallel plate capacitor having plate
of radius @ and separation d. Our goal is to predict the
magnetic field between the plates B, as caused by conduc-
tion currents alone. These are the radial currents X in the
plates and the axial charging current / in the feed wires (see
Fig. 1).

I1. CIRCUITAL LAW

Ultimately we shall use the Biot-Savart law to predict
the field. It is instructive, however, to begin using Ampere’s
circuital law. Idealize the capacitor by assuming that it is
thin (a' <a). Consider the loop shown in Fig. 2. In most
texts, Ampere’s circuital law relates the integral of B
around the loop to the flux of displacement current
through the plane shaded area:

(47)57]3"“_]'] A= (l) ang
—f( )dA.-—. (1)

Fig. 2. B field from Ampere’s circuital law. Shaded area penetrated by
displacement current; unshaded area, by conduction current.
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From this we find
B, =2Ip/cd’. (2)

Following Dahm, however, we may close the loop by
another surface through which only current penetrates.’
This is the unshaded surface in Fig. 2. The concealed end of
this cylinder simply contributes the current I. Since the
plates are being charged uniformly, the contribution of the
curved part of the cylinder is just

27pK = — (1 —p*/a*)l. (3

Thus the net effect of the current through the unshaded
surface is

(c/47) (2mpB,) = Ip*/a’, (4)
as found earlier in Eq. (2).

II1. BIOT-SAVART LAW

The construction of Fig. 2 suggests a direct, if approxi-
mate, way of using the Biot-Savart law. For an observer
between the plates, but far from the axis, the magnetic field
from the feed wires is just that of an infinite wire,

B, (feed) = 21 /cp. (5)

To this we must add the field owing to the radial conduc-
tion currents in the plates,

2
B, (plates) = drK _ _ (2—1)(1 —’97>, (6)
¢

cp a
where K is the radial surface conduction current density in
the plates and the factor (1 — p°/a”) expresses the reduc-

tion in K arising from the uniform charging of the plates.
Thus the total field is

B, =2lp/cd’, (7

for p < a in agreement with the standard result found from
using the displacement current and Ampere’s circuital law.

Even for a thin capacitor our simple Biot-Savart treat-
ment fails both close to the edge and close to the axis. Un-
fortunately, we cannot predict the magnetic fields close to
the edge. This should not be surprising since near an edge
one must use numerical techniques even for the electric
field.®

We can, however, refine this calculation to predict the
magnetic field close to the axis. This is an awkward region
where the axial current in the feed wire is diverging to form
the radial currents in the plates. The trick is to break the
conduction current into two oppositely directed parts. (See
Fig. 3.) The “continuous” current /, flows along the axis
and thence radially within the plate to its edge. There it
jumps to the second plate and flows back into the axis. This
current produces neither charge on the plates nor magnetic
field between them.” Both o and B, result from the coun-
terflowing “charging” current 7,. This nonconserved cur-
rent begins on the axis of the second plate. It flows radially
along the inner surface toward the edge. The strength of the
charging current increases with p,

K, = Ip/2nd?, (8)

until at the edge its strength is equal to that of the contin-
uous current. From here it jumps back to the first plate and
flows into the axis of that plate. In the region between the
plates I, and 7, cancel, as they must since there is no net
conduction current there.

The charging current K, does produce a magnetic field
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Fig. 3. B field close to the axis from the Biot-Savart law. Open arrows
show “continuous” current /,; closed arrows show “charging” current /.

at p. The contribution from the element K, ( p',¢',0)dA to
the magnetic field B, ( p,0,2) is simply

dB, = K,zcos ¢’ d4 /cR >, 9

where K, = Ip'/2ma?, R is the distance from source to field
point, and we have used a cylindrical coordinate system
whose origin is the center of the given plate. The integral of
dB, is most conveniently evaluated in a different cylindri-
cal system: one whose axis passes through the field point.
(See Fig. 4.) In this system K, has coordinates ( p”,¢",0)
and the desired integral is

B, =( ! )f(p—{-p" cos ¢”)

2mea?

sz” d¢” dp"(pr12+z2)—3/2‘

(10)

Fig. 4. Variables used in integration of Eq. (10): C = center of capacitor;
P = field point.
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Here we have wused the relations

=p+p"cos¢”and d4 =p" dp” dg”.

Since we are mostly concerned with the field close to the
axis ( p €a), we consider first the near region, p” <a — p.
Here, ¢” can go through the full 27 rad without hitting the
edge of the plate. Hence the integral of the cos ¢” term
vanishes. The remaining integral is elementary,

B, =Izp(ca®) - 'f

0

p cosd’

a4 — p

pu dpu(puZ +22) — 372

=Ip(ca®) " '[1 —z/(a—p)]. (11)
This is the dominant contributor to the integral. The two
other sources are the lune-shaped region between the ec-
centric circle p” = a — p and the boundary of the plate
p' = a and I, flowing at p' = a between the plates. Both
these contribute only to terms of the order
Ip(z/a) (@®c) ~'. In the limit of a thin capacitor with two
plates, we are thus left with twice the leading term in Eq.
(11),
B, =2Ip/cd’,

as desired.

We return now to the general question of why displace-
ment currents are not needed for quasistatic magnetic
fields. This is because the Biot—Savart law can be integrated
by parts® to give

cB(r) = fJ(r’) XV'(;)(J’T'
Ir —r'|

(12)

(13)

= JV’ xJ 4 (14)
r—r'|

Let us apply the second form of the Biot—Savart law, Eq.
(14), tothedisplacement currentJ, = (1/47)3d D/dt. We
see immediately that the relation curl E = O ensures that
the quasistatic displacement current cannot produce a
magnetic field either in vacuum or in a homogeneous di-
electric. This fact was used by French and Tessman in their
discussion of the leaky capacitor.

IV.LEAKY CAPACITOR

Consider a charged capacitor immersed in a conducting
medium. Does the slow discharging of the capacitor pro-
duce a magnetic field? Naively we observe that the ionic
current J, between the plates is balanced by an equal and
opposite displacement current. Thus there is no net current
to produce a magnetic field. But French and Tessman have
shown that when fringing fields are included the displace-
ment current contributes nothing. We are then left with
only the ionic current. Observe, however, that even this
current is impotent if the lossy medium is homogeneous
and ohmic. In that case J; « E « V¢ everywhere and can-
not contribute to Eq. (14). In the case of the leaky capaci-
tor, naiveté might be justified after all.

We have seen that no magnetic field is produced if a
capacitor of any geometry discharges in a homogeneous,
ohmic medium. It is also evident that a nonconducting me-
dium is permissible so long as it is not penetrated by any
lines of force. Thus a thin capacitor of infinite radius will
not produce a B field even if surrounded by nonconducting
material.

Now consider a thin capacitor of finite radius a. Suppose
that the capacitor is immersed in material of constant per-
meability, but that the material is conducting only in the
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z 1\ Fig. 5. Leaky capacitor discharges internally.
Magnitude of conserved toroidal current is
‘ I, (ext).
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region between the plates. This is the case envisioned by
French and Tessman.” Since the capacitor is no longer infi-
nite, we might expect a B field about d /a times as large as
that for a capacitor charged externally through axial leads.

Our expectation is correct. To see why, consider that at
any time during the discharge the fotal displacement cur-
rent I, is equal and opposite to the ionic current /;. Both
currents may be divided into external (ext) and internal
(int) parts according to whether the current is in the fring-
ing or central field of the capacitor. For the displacement
current, the ratio of these currents is just the ratio of the
capacitances:

I, (ext) = [C(ext)/C(tot) I, =ql, = —ql, (15)
and
I, (int) = [C(int)/C(tot) I, =pl, = —pI,. (16)

For the leaky capacitor discharging internally, however,
all the ionic current is internal,

I, (int) =1,; I,(ext) =0. (17)

Both I, (int) and 7, (int) are uniform. Thus we can use
Ampere’s circuital law to predict the B field within the
plates [r<(a—d)]:

By = —2[I,(int) — I, (int) |p/ca’
= —2I,(1 —p)p/ca* = — 2I,pq/ca?, (18)

where the minus sign arises because we have assumed the

top plate to be positively charged, as in Fig. 5. This equa-
tion makes it clear that fringing fields are important. The
fraction of capacitance g, represented by the external field,
varies as d /a. Sloggett et al.® have recently determined that

q_ (—fl—)ln( 1677'0) +( d )zln( 16ma )2' (19)
J/ ma ed 2ma d

For the specific case of d /a = | illustrated in Fig. 5 the
ratio g/p is 0.49 and the external electric flux is fully half
the internal.

Suppose that the location of the conducting material is
reversed. It now occupies the space outside the plates rath-
er than inside. A straightforward analysis, similar to the
one just given shows that here B, = + 21I,pp/ca®. Table I
summarizes the complementarity evidenced by internal
and external conduction.

Internal discharge differs from homogeneous discharge
in a key respect. The former requires conduction currents
within the plates. Recall that the surface charge is uniform-
ly distributed on the inside of a capacitor plate, but is
strongly localized near the rim outside. When immersed in
a homogeneous conducting medium both inside and out-
side charges are the direct source for the ionic current J,.
However, when the plate discharges internally (or exter-
nally) a radial conducting current J is needed within the
plates to link the two charge distributions. Figure 5 illus-
trates an internally discharging capacitor.

Table I. Leaky capacitor. (All currents considered to be positive if flowing away from positively charged upper plate illustrated in Fig. 5.)

Condition I, (int) I, (ext)

I, (int) I, (ext) cB,

Complete

immersion —pl, —ql,
Conducting

material inside

gap —rl; —4qI,
Conducting

material outside

gap —pl; —aql;

pl; ql, 0

—2ql,p/a°

2pl,p/a®
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In the spirit of this paper, we should be able to under-
stand the fields inside a leaky capacitor as arising from J,
and J- alone. I will give the details separately. Here are the
results for B, close to the axis of a thin capacitor that is
leaking internally.

The contribution of the ionic current J, may be calculat-
ed directly from the alternate form of the Biot-Savart law,
Eq. (14). Here the volume integral reduces to a surface
integral at the edge

2
CB¢ = _Jlad M
o |r—r|
= —J,adfd¢ cos ¢(a* — 2ap cos ¢ + p*) ~ /?
~ —ml;pd/a= —I,pd /a’. (20)

The contribution of the ionic current is reinforced by a
larger contribution from the conduction current /.. For it
we have

cB, =4nK. = —2l,gp/a* + I,pd /a’. 2n

Here the first term originates from a ring source of cur-
rent I = I, (ext) = ql, at p = a migrating to charge the
inside of the plates uniformly. The second term is a correc-
tion term reflecting the fact that some of the charge on the
outside of the plate is already present near the axis and thus
does not have to flow radially.

In the limit @> p, d, the ratio of the contribution of the
conduction and ionic currents to B, grows logarithmical-

ly,
B, (cond) zzﬂz(i)(ln 167m)' 22)
B, (ion) d T ed
Evidently the purely ionic contribution will be hard to find.

V. CONCLUSIONS

Perhaps this discussion has only convinced the reader
that it is fruitless to make delicate measurements of B in-
side a capacitor. As we have seen, this field may be predict-
ed from the Biot-Savart law and conduction currents or
from either conduction or displacement currents and the

circuital law. Yet the very predictability may give interest
to this relatively unexplored example of electromagnetism.
For instance, in setting J,, = (1/47)d D/dt, Maxwell as-
sumed more than was needed. Strict current conservation
could still be accommodated by adding to J,, the curl of X
where X is an arbitrary vector field.'° Such an anomalous X
would produce a twisting of J,, which in turn produces a
magnetic field in an unexpected direction. Recently Gengel
and I have looked for such unexpected fields in a cylindri-
cal capacitor."'
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